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I. INTRODUCTION

There is an increasing number of design problems which involve the

coupling of magnetic fields, induced currents and mechanical behavior. More-

over, many of these problems also involve thermal effects which may or may

not be coupled with the magnetomechanical behavior. Among the types of machinery

and devices for which such coupled behavior is significant are superconducting

motors and generators [1] fusion reactors [2], magnetic levitation transport

systems [2], transmission lines, magnetomotive tools [3], [4], inductive

storage units, MHD devices [2], and various other electromagnetic devices and

switches (5]. Other objects subject to these phenomena are structures or

devices called on to withstand lightning or electrical shorting in high voltage

switches [5]. A review of many of these coupled problems in magneto-solid

mechanics has been presented by Moon [11].

The computational problems involved in analysis of the coupled behavior

of such structures are formidable. Therefore, prevailing practice has been to

undertake separate analyses of the magnetic, thermal and mechanical effects.

A magnetic field and induced current analysis is first undertaken to predict

the magnetic forces on tkA* assumed rigid structure. Temperature fields are

next predicted. As a final step, analysis for the uncoupled mechanical response

is performed.

This uncoupled approach may be inadequate in several regards. First,

the deformation of the structure will alter the induced currents and the

concommitant forces, and this effect will lead to altered structural response

and may produce structural instabilities. (For example, such magnetomechanical

instabilities have been found in structures for proposed fusion reactors [6],

[7]). Second, in dynamic problems the eddy currents may give rise to thermo-

elastic effects. Finally, in superconducting problems, the vast thermal



differences and gradients will have a pronounced effect not only on the

magnetic behavior but also on the material nonlinearities entering the

mechanical behavior.

The goal of ongoing research at Cornell is to develop numerical methods

for the coupled analysis of forces, currents, and stresses in thin elastic

structures exposed to time-dependent magnetic fields. In particular the

project is directed toward time dependent magnetic forces and motions of

elastic plates and shells. Both applied mathematical analysis and finite

element numerical computer techniques are being used. Although some initial

attempts have already been made by others (Oden and Kelley [81; Miya et al.

[9]; Becker and Pillsbury [10]), many fundamental difficulties remain to be

overcome if practical analysis tools are eventually to result. Verification

of the newly developed computer codes is carried out by direct comparison of

the calculated results with experimental data and is carried out at each

stage of the development. The experiments employ a new infrared scanning

technique to visualize the induced eddy current patterns in the structures.

This technical report is an account of the first year's accomplishments in

this effort.

Coupled magnetomechanical problems are unique in that the electro-

magnetic field equations apply both inside and outside the structural material.

Thus most techniques for calculating stresses due to electromagnetic fields

require a three dimensional treatment even if the structure is one or two-

dimensional such as a beam, plate, or shell. In this research a stream function

for the induced current in the conducting structure has been used which re-

duces the magnetics problem to a two-dimensional one and allows one to use

the same set of finite elements for both the magnetic and elastic deformation

fields. The use of a current potential or stream function is similar to vortex

* p.



-5-

mechanics in fluid mechanics, and results in an integro-differential equation

for the induced currents in the structure. Once these currents are calculated,

the magnetic forces, stresses, and motions of the structure can be found.

To solve the integro-differential equation, a finite element Galerkin scheme

has been developed which leads to an algebraic set of equations for the induced

currents. The resulting global matrix is complex, nonsymmetric, and fully

populated. The usual limited connectivity (banded matrix) finite element

representation is lost in contrast to conventional structural finite element

problems.

To date, the research has focused on the response of flat plates to

steady state harmonic and pulsed magnetic fields. A finite element code for

one-dimensional magnetic field problems has been successfully developed

which can calculate the induced current and magnetic field in the plate, the

magnetic pressure distribution on the plate, and the induced temperature distri-

bution due to Joule heating in the plate. The computer code has been compared

directly with experimental results. Comparison of calculated induced temperature

fields with infrared scanning measurements show the difference to be within

observational error.

A two-dimensional computer code for the induced currents, magnetic field

and temperature in a conducting plate has also been written. The flow of eddy

currents around a crack in a plate is one problem investigated with this

program. This type of analysis has application to the development of non-

destructive testing techniques.

In the next chapter, the formulations of the problem are summarized.

This summary includes the basic theory of coupled magnetomechanics, the stream-

function method for eddy currents in flat plates and cylindrical shells, and

the coupled magnetomechanic formulation for flat plates. Chapters III and IV
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contain, respectively, descriptions of the one- and two-dimensional computer

programs for eddy currents in flat plates. Numerical results and experimental

verification for both programs are presented in Chapter V. Finally, conclusions

based on developments to date are presented in Chapter VI.



II. FORMULATIONS

In this chapter, the basic theory of magnetothermomechanics is briefly

reviewed. The formulation of the eddy currents by the stream-function method

adopted for use in this research for flat plates and cylindrical shells is

next presented. Finally, the coupled magnetomechanical formulation for flat

plates is summarized.

Review of Basic Theory

Magnetothermomechanics encompasses a rather complicated three-field

problem. The coupling of the three fields is shown schematically in Figure

II-1 and occurs through the field equations, constitutive equations, and

boundary conditions. A number of formulations of the governing equations and

boundary conditions for various physical specializations have been presented

[11], [12]. For the descriptive purposes of this report, only a single version

corresponding to Figure II-1 is presented here.

When a deformable electric conductor is placed in an electromagnetic

field B, electric currents flow in the solid and electric and magnetic polari-

zation of the material may be induced. In this study the electric polarization

is not considered. The electric currents J (sometimes called eddy currents)

and magnetization M, can then interact with the magnetic field to produce a

body force distribution on the solid [131. Thus to determine the stresses

and concomitant deformation of the structure, the distribution of electric

currents, magnetic field, and magnetization in the body must be determined.

In this research only nonferromagnetic materials (M = O) such as aluminum or

copper have been treated to date.

In addition to magnetic forces, the flow of current produces heating

in the solid proportional to J • J called Joule heating. If the currents
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are confined to one region of the structure then differential heating can

occur and thermoelastic stresses can result.

The following equations and boundary conditions apply to the problem

of dynamic thermoelasticity coupled to the quasistatic electromagnetics of a

medium. The medium is assumed to be well conducting, non-polarizable and

non-magnetizable. The influence of strain rate on temperature distribution

is assumed to be small as is the effect of temperature on material properties.

All configurations are referred to a Cartesian system (xl, x2 , x3 ) fixed in

space. The assumption of quasistatic electromagnetics in association with

dynamic mechanical behavior is Justified by the fact that the frequencies of

mechanical vibrations and waves are generally much smaller than those of

electromagnetic waves of the same wave length.

The quasistatic magnetic field equations for this case are obtained

from the Maxwell equations and are [13],

V x E -B/t(I-la)

7 -B 0 (II-ib)

V X R J (II-Ic)

in vhich E is the electric field density, B is the magnetic flux density,

H is the magnetic intensity, and J is the electric current density. The

electromagnetic constitutive equations for a linear, isotropic, homogeneous,

resistive, nonferromagnetic* material are

B p 0i (II-2a)

-a[E + V x B] (II-2b)

For linear ferromagnetic material one replaces Uo by o1 r, r > 

W~or linea



in which U0 is the magnetic permeability of vacuum, a is the electric conduc-

tivity and V is the velocity field. For a zero resistive or superconducting

material, Ohm's law (II-2b) is replaced by an equation of the form

The electromagnetic boundary conditions are

xI!+xVx . 0 (ii-3a)

n . 0 (II-3b)

nx [BJ =0 (II-3c)

in which n is a unit norm-' vector to the boundary, and Pj denotes the

Jump of the quantity Y across the interface.

The mechanical field equations are the equilibrium equations

P i a 2u A + F + (J x B) (II-4)

in which u is the displacement field, T is the stress tensor, F is the

mechanical body force intensity, p is the mass density. Equation II-4 includes

magnetomechanical coupling* through the Lorentz body force term (J x B). The

mechanical constitute equations for a linear, isotropic, nonferromagnetic

material is given by the Duhamel-Neumann law.

Ij = 2GeiJ + [AeO - B (T -To)] 61j (II-5)

*For ferromagnetic bodies an additional force must be added.



in which G and X are the LmS parameters, eij in the strain tensor, T is the

temperature, T0 is the initial uniform reference temperature, B - (3d + 2G)(1,

and a is the coefficient of thermal expansion. Finally, the mechanical boundary

conditions are

T. n, T* Yj l + uH N H RA 1 n, on S* TI-a

U U on Su  (II-6b)

in which S -S T + Su, and Ti and ui are specified surface tractions and

surface displacements.

For the third field, the temperature, the field equations are

PCv 2 - K 32 T (1-7
v atx i  xi  -

in which C is the specific heat, and K is the thermal conductivity. Thev

Joule heating term, J • E, provides magnetothermal coupling. The strain rate

coupling term has been dropped in (II-7). In the absence of heat input

across boundaries and if radiation can be neglected the thermal boundary

conditions ar.,,.

T Y on S. (II-Sa)

K • VT - 0 on S2  (II-8b)

in which S = S1 + S2 , and Y is the specified surface temperatures.

Equations 11-1 through 11-8 constitute an example of a coupled problem of the

form shown schematically on Fig. 11-1. A practice frequently followed is an

uncoupled approach in which first the electromagnetic problem is solved for

"rigid" conductors, second the temperature distribution due to Joule heating

p. .. .
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is ascertained, and finally the mechanical problem for the conductors is con-

sidered driven by the known temperatures and Lorentz forces. This simplified

problem is obtained in Figure II-1 by omitting the dashed coupling lines from

the schematic.

For dynamic magnetic fields even the uncoupled electromagnetic problem

is difficult to solve since the induced currents in the conductor are unknown.

When an external magnetic field B0 induces eddy currents in a conductor these

currents generate their own self magnetic field B1 (see Figure 11-2) which in

turn affects the eddy current problem. Several problems of this nature have

been solved using finite element methods ([141 - (17]). These approaches

however use a finite element discretization both inside and outside the conductor

which makes the extension of these numerical schemes to coupled mechanical

problems difficult.

Two different solution approaches to the eddy current problem have been

undertaken. The first, or local "proach, seeks to solve the differential field

equations and satisfy all the boundary and initial conditions directly. The

domain of the solution is the entire space in wthich the fields act and includes

the current-source conductors, the induced-current conductors, and the sur-

rounding space (theoretically out to an infinite distance). The second, or

nonlocal approach, uses integral restatements of the formulation such that

only the bodies of the conductors themselves need be considered in the problem.

Thus this approach avoids treatment of free space extending to infinity and may

be easier to extend to coupled magneto-mechanical problems.

Briefly, the local approach for the uncoupled problem of Eqs. II-1 through

11-8 above is most conveniently expressed in terms of the magnetic vector

potential A, defined by



VB

', Eddy currents

B
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B - VxA (since V. B - 0) (11-9)

The governing equations for the potential A in the conductor become

; + V x A- o V xA (II-10)

in which Jo is the initial current density carried by the conductor.

Outside the conductors a - u - 0 and A must satisfy

VxVxA - 0

for non-electromagnetic wave problems. Thus the solution for A must be

pieced together for regions outside and inside the conductors using appropriate

boundary conditions. It is difficult to couple a structural finite element

scheme for the deformation of the conductors using this local formulation.

A Galerkin finite element formulation can be used for this form of the

problem ([14 - [17]), but details will not be repeated here.

Alternatively, a nonlocal formulation for the eddy current problem may

be constructed by the integral equation method. Here the vector potential

is separated into two independent parts, AO and AI

A - AO + A, (I-l)

corresponding to the driving and induced fields, respectively. Ohm's law

for the rigid, induced-current conductor may be written as

Cr~i -L O'- -L O -a -L A. atA -at a (11-12)

where JO has been assumed to be zero, i.e., no external voltage is applied

to the induced-current conductor. Within the conductor, the external field

satisfies V x Ho = 0; therefore, A* is harmonic, i.e., V2 AO 0, while the

induced field satisfies the vector Poisson equation

I"6
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.2 A, " "11JI  (11-13)

because V x H - JI. If retardation is neglected due to sufficiently

slow variation of all electromagnetic quantities with time, the solution

of Eq. (11-13) for AI is

A' IX -_#1 d(Vol') (11-14)

which gives an integral equation in terms of j

jI+ l f Tr1  _ jI (r') d(Vol') -a (11-15)-E r'l t at . -- 5

or in terms of A'

A f AI (r') d(Vol')AO (11-16)

v

A finite-element-like treatment of this formulation of the eddy current

problem has been presented by Sylvester et al. (18].

Eddy Currents. Pressures and Temperatures by the Stream Function Method

When conductors are thin-sheet structures such as plates or shells

which are used in many practical configurations, a different nonlocal approach

for the eddy current problem suggested by Moon [11] can be of greater utility

than the integral equation method. This involves the introduction of a stream

function for the current. If the current is of relatively low frequency,

the induced current distribution can be assumed to be uniform through the

thickness, and the current density is denoted by I - hJ where h is the thick-

ness of the sheet. Let (a,a) be a two-dimensional orthogonal coordinate system

on the mid-surface of the sheet conductor structure, and let (x,y,z) be a Cartesian

p.J
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coordinate system, so that

x - x(a.,), y -y(c,s), z = z(a,,B) (11-17)

The infinitesimal line element on the surface is given by

2 . f2d2 + 2 2 (11-18)

in which

f ax2 + + z2

2  ax2 + + (11-19)
( +az 2

The orthogonality of (aj,,) coordinate system requires that

ax Ax (&..)( +) az )z
_3_ + 3cS + 0 3a 0 (11-20)

Let e and e be unit tangent vector along a = constant and 8 = constant,

respectively. em 1 ax ax

f a: g (11-21)

1 az iaz/

The current density on the surface can be written in the form

I I It(CL,,) ac + IO(a,O) e8 (11-22)

The continuity of I requires that

divI 1 . a ct) + f (II-23)

feg £act4gl A 0 (11-23

This suggests the use of a stream function V for the current

This function, when defined as

n 1 , BO act (11-24)g 90 f =" am,

Iga.
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identically satisfies the continuity condition. The current flows along lines

of Y a constant. The time-varying magnetic field is the sum of the external

Ifield, BO, and the induced field, B , Therefore, from Faraday's law,

Equation II-l(a), curl E - , one may write a governing equation for

the determination of Y:

curl - curl (4) = rh (BO + BI )at (11-25)

Only the normal (n) component of the vector equation will be used

because the in-plane current is of primary interest. The induced field may

be obtained from the Biot-Savart law. The specific derivations are given

below for flat plates and thin cylindrical shells. Once the relationship

between the induced field and the stream function is obtained, T may be

determined from Eq. (11-25). The current can be recovered from Eq. (II-24),

and magnetic pressure and temperature then obtained for the calculated

current.

Flat plate. The derivation for the case of a flat plate has been

given by Moon [111. The details are not repeated here; only the essential

relationships are recapitulated.

If the mid-plane of the plate is chosen as the xy plane, a x,

Bay, and one obtains

I Vx (IM) - -n x VtP- ~( -= V (11-26)

and

72 1P a h -L (Bo + BI) (11-27)I

For the determination of B' the current stream function T is assumed

to be defined throughout three-dimensional space, and constant across the

to~
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sheet thickness. Application of the Biot-Savart law and the divergence

theorem yields BI for the midplane of the plate (z = 0):
Z

BI ____________P_______&________________Bh(y~) 7 f (x' d 2+(!1a) 312 (11-28)
area [(x - x') + (y - y')2

T has been set to zero on the boundary of the plate in the above

derivation. When the plate is multiply connected, different constant

values of T will be assigned on each interior boundary. These boundary

conditions, together with the known B0 and Eq. (11-28), are then used inz

(11-27) for the determination of the stream function '. Once T is deter-

mined, the current, pressure, and temperature may be calculated from (11-26)

and the following two equations

P =I X (BO + BT) (11-29)

t

T -2- (1-30)
OpCv h o

in which P is the pressure, T the temperature rise, p the density, and

C the specific heat of the conductor.v

Cylindrical shell. The stream function method has been extended to

the geometry of a cylindrical shell. In this case the coordinate system

is chosen as shown in Fig. 11-3. For a fixed radius p = a, one has ct =

B = z. The stream function T may be introduced such that

IV x (,ep) k e - e
P az 4 ao ZZ (11-31)

i.e.

I- aI -; (11-32)

The normal component of (11-25) in this case reads

32, c h ~(B0 + B 1 ) (11-33)
2 a 2  + 2 at P p

.. . ., . . , .> ,
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Figure 11-3. Notation, Coordinates, and Sign Convention ffor
Cylindrical. Shell.
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To calculate B' one starts from the Biot-Savart law

i I(r') x (r- r')(r) = .. d(Vol.') (11-34)
" ~ ~Volume Ir

Let

R -- (11-35)

then

R = (pcose - p,) ep, + psine ee, + (z - z') ez (11-36)

Using Eq. (11-32) and the relationship

R

one has- 
-

B I (r)

vol.

The integrand can be written in the form

1- ap' aj_v , l I -[-ao' - .I(11-39)

The second term vanishes because = . Using an identity to replaceBpi
the first term, one obtains the expression for B I as

p

vol.

*()+ ~ 1  (p 1 ...)d~vol.)(l- )
vol.

If one uses the divergence theorem on the second integral and sets T = 0

on the end edges of the cylinder, one has

BI (r + d(area' )

outer

[ a 1d(area' ) (11-41)

inner ~

,,'.i,
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On the middle surface of the cylinder one obtains, by setting p -a

in the above expression,

I*(a, ',z')[acose - (a + ])](a + !)d6dz'
B3 (a,, = + e~h f ( 11 2 2 (z *23/2
p h r {acos - )+ ) + a2sin2e + (z - z')

o:uter 2

hi (a,¢' ,z' )[acos6- (a - )](a - )dedz- h 2 2 2 , 232 (11-42)
ner {[acose - (a - 1)]2 + a 2sin 2e + (z - z)23/2

inner2

when I is independent of the variable z, the self field becomes
2w h

I + I 4(e)(acose - (a + d6
BJ a202 h dp h 27r h 2Ja+ (a +,) - 2a(a + II)cose0 'I ~2wh 2 J (e)[acose - (a -)1

2 h2
One 2 2f a 2 (a- + ( _ 2a(a - )cosd

One can show that when T = c, a constant everywhere, or I = 0,

then

1 7 2 [acose- (a + (a+ )
B PC + ( 2 2 dedz
p h f {[acos (a + ]j)]2 + a2 sin2 6 + (z z,)213/2

02

[acose - (a - E)ma - h)

111] 2 2r [acosez d~dz
- 0 {[acose - - h]2 + a22 + - z) 2}3/2

=- {1- . + o)h

=0

as it should be.

The same boundary conditions as in the flat plate case also apply to

cylindrical shells. The current may be calculated from (11-32) after T is

determined. Pressure and temperature may be computed using (11-29) and (11-30).



-22-

Coupled Magnetomechanic s

The complete set of field equations and boundary conditions for

coupled magnetothermomechanics has been presented in the first section.

The finite element Galerkin technique may be applied to reduce them to a

set of nonlinear algebraic equations. Although all the coupling effects

are preserved in the finite element equations, this approach does not seem

to be practically feasible. The reasons are obvious. Firstly, the three-

dimensional nature of the problem cannot be avoided. Both the conductor

and the surrounding space need to be treated, and some fictitious boundary

conditions assumed at some far away distance. This makes the storage and

computational efforts needed to solve these nonlinear equations formidable.

Secondly, the geometric and time characteristics of the problem cannot be

easily represented. Consequently, it will be difficult to study the roles

of some physical parameters in practical problems. The complete field

approach is not emphasized in this research work; therefore, the finite

element formulation of this approach will not be presented here.

The stream function method, on the other hand, averages the current

through the thickness and represents it on the mid-surface of the sheet-type

conductors. The problem is therefore reduced to a two-dimensional one. This

method employs the current-sheet nature of the eddy-current distribution,

and is parallel in spirit to the plate and shell theories of elasticity.

A definition of the mid-surface is needed in this method. All the physical

quantities are calculated and represented on it. This nature of the stream

function approach makes it intrinsically Lagrangian. The incorporation of

the large deformation analysis of structure and the transient eddy current

calculation seems natural in this light, although some kind of surface inter-

polation may be needed to represent the deformed structure in the intermediate
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stages. A possible solution procedure for large deformation analysis of

the coupled magnetomechanics using stream function method is shown in

Fig. 11-4.

From the practical point of view, magnetomechanical problems may be

classified into several groups according to the difference in time scales

between mechanical and electromagnetic field problems. In the impulse

loading problems, such as electromagnetic metal forming, impulse durations

of 1%, 10 1 usec and strain rates of Ili 10 4sec-I have been reported [191. Since

the fundamental period of the conductor structure is much higher than the

duration of the pulse, these problems are best treated as initial velocity

problems. The nonlocal eddy current effect is expected to be important in

this case and is definitely needed for the accurate calculation of the

pressure. The mechanical part of the problem in this case is usually one

of dynamic plasticity.

When the duration of the pulse, or the period of the harmonic driving

current, is comparable with the fundamental period of the structure, most of

the coupling will occur through the displacement of the structure. The non-

local effect will be small in this case, because the eddy current will have

enough time to diffuse. A much simpler problem may then be obtained by

dropping the nonlocal effect of the eddy current. If the displacement is

small so that the original configuration may be used for reference for both

structural and eddy current problems, two sets of linear matrix equations may

be written for structural and eddy current problems separately. The coupling

of the magnetic field and the motion of the structure in this case appears on

the right hand side of the equations only.

The most difficult coupling problem comes from the cases in between the

above two extremes, i.e., when the frequency of the field is high and the
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Figure 11-4. A Possible Algorithm for Large-Deformation,
Coupled Magnetomechanics.
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duration of the pulse long enough to cause large deformations. Examples of

these problems may be found in the design of fusion reactors during the

starting and shut-off periods. The full power of the algorithm shown in

Fig. 11-4 may be needed for these problems.

Other problems of interest include the coupling between field and

the rigid body motion of the conductor, such as that of magnetic transportation.

A judicious choice of the type of magnetomechanical coupling is therefore

essential. For plate and shell type problems, the stream function method is

believed to provide a more convenient way to model the various coupling

effects.

I.J
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III. ONE-DIMNSIONAL CODE FOR FLAT PLATES

In this chapter the finite element Galerkin formulation for the

problems of one-dimensional, steady-state harmonic currents in long plates

is described. The treatment of the nonlocal integral term is briefly

discussed. The capabilities of program ONED, a fortran code developed

based on this formulation, is then introduced. The input and output of

program ONED are finally described.

Formulation

When the current I is independent of y, eq. (II-27) has the following

form: A Bo
? dX - ah

atx2 -x) (X(-)

For steady-state harmonic currents in the plate, this equation may be non-

dimensionalized into

2 a

dx IR* + iy- 0 d& = iRB(x) (111-2)
dx -a - + T

in which x and are distances across the width nondimensionalized with respect

to the thickness h; , I oI e i; B° = (U/A)B(x)10eit ; the magnetic Reynolds
z

number R = WlUh 2 , which is related to the skin depth 6 through R = 2(h/6)

I is the current in a nearby exciter coil; 2A is the width of the plate;

and 2a the nondimensionalized width.

The finite element Galerkin method is used to solve the integro-differ-

ential eq. (111-2). * is approximated globally and locally by piece-wise

linear models

G
r£1 Mkok (111-3)

2
2. EE1 " H k (III-4)

k=l

.

l -. .. ... . .... , - ., ...... , , ,,,,. ,, r -- - . , ... .,,,,, .. .. .... .......
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Figure Ill-i. Notation, Sign Conventions, and Shape Functions
for One-Dimensional. Flat-Plate Problems.
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in which G is the total number of nodal points, the superscript E denotes

the E-th element, and Mk are the global interpolation functions generated from

the local linear element shape functions NE. The linear algebraic equations
k

for each element are

2 E2 E OM G E
Z Sk "  E P k + i r i Q O iR (111-5)W= k=1 k=1 -k''

in which

E E

SEk 'J"j k d.x; E *R J NE N dx

a 1(111-6)

Q E =nRfJ MO )WE(t) dE RE - RfjNE Bdx

-a E

the weighting functions Q used in calculating the integral term is

E

+ E dx (111-7)

Both (111-6) and (111-7) are integrated analytically. The resulting global

matrix is complex, nonsymmetric, and fully populated. The usual limited

connectivity (banded matrix) finite element representation is lost due to

the nonlocal nature of the problem.

When the frequency of the external magnetic field is low, the effect

of the self field is small. The solution in this case will approach the

local solution obtained by dropping the second and third terms on the left

hand side of (111-2). When the frequencies is high, the distribution of the

eddy current is primarily influenced by the self field. The solution will

approach the one obtained by dropping the first term on the left of (111-2).

I..
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The solution so obtained is an asymptotic value for the high frequency limit,

and is called the image solution in the literature.

Capabilities of the Program ONED

A Fortran program ONED has been developed based on eqs. (111-5) - (I1I-7).

It is designed to perform the following calculations:

(1) local solutions of stream function, current, temperature, and

pressure,

(2) nonlocal solutions of stream function, current, temperature,

and pressure,

(3) image solution of stream function, current, temperature, and

pressure.

To perform the calculations necessary to construct a spectrum, 0NED performs

the above calculations for any number of magnetic Reynolds numbers in one

run. Multiple load cases (up to 10) are allowed. Each load case will be

solved for all the magnetic Reynolds numbers specified for that run.

Presently, ONED can handle uniform magnetic field cases and cases

where the fields are generated by any number of conductor wires parallel to

the plate. The strengths and senses of the currents and the positions of the

wires may be different. Space has also been left to. include other types

of exciting fields in the program.

input

Program ONED takes the geometric information of the plate and magnetic

field source information as input. The total numbers of nodal points, load

cases, parameter sets, and the plotting option of the output must be specified

on the master input card. Nodal point information may be generated for portions

of the mesh that are uniform.
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The type of source of magnetic field is specified. No other information

is needed for uniform magnetic field. For the parallel wire cases, the

positions, senses, and the relative strengths of the currents in each wire

must be input subsequently.

All the input data must be nondimensionalized according to the con-

ventions presented in the formulation.

Output.

Values of the stream function, eddy current, temperature induced in a

half-cycle of the current, and time-averaged magnetic pressure exerted on the

plate are produced as output of the program. The stream function and eddy

current are calculated in complex form. The stream function values are

calculated at the nodal points of the mesh, while the current, temperature,

and pressure are evaluated at the centroids of the elements. The stream

function and eddy current are given in complex form, and the modulus and

phase angle are calculated for the eddy current. Values of the modulus and

phase angle for different frequencies may be used to generate the spectrum

of the current at any point on the plate. These curves and the spectrum of

the exciting current may be used to calculate the transient current at the

point by fast Fourier transform techniques.

All the outputs of the program may be plotted out using a printer-plotter

subroutine. This capability is optional and can be specified in the input.

In this program the local solutions are printed out and plotted parallel

to the nonlocal solutions for comparison. When there are several load cases,

the results are printed out in groups in the sequence of the load numbers.

In the multiple parameter (frequency) cases, this is done for each Reynolds

number. Title lines will be printed for each parameter to distinguish the

different groups of output. Image solutions, which are independent of the

[ , . . . ... .. .. . ,:o..,. .. j , , 4~, , _ . . . .. .. . . . . . .. . .. . . . . . .



Reynolds number, are printed out last in the sequence of load cases.
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IV. TWO-DIMENSIONAL CODE FOR FLAT PLATES

The finite element Galerkin formulation for the two-dimensional problems

of steady-state, harmonic currents in flat plates is presented first. The

treatment of the nonlocal integral term is then described in some detail.

Program TWOD, developed based on this formulation, is then introduced. The

input and output of TWOD are described at the end.

Formulation

For steady state, harmonic current in a flat plate plate, (11-27) may

be nondimensionalized into the following form

V2€ - 12rRo + iR Jddn = i2€TR)(xy) (Iv-l)

rea [ ( x- V)2 + (y - n)2 + 113/2d

in which the coordinates are nondimensionalized with respect to half the

thickness h - 0 = )Oe ; the magnetic Reynolds number

is R = 8 , which is related to skin depth 6 through R = (1)2; and B

is the reference magnetic field.

The finite element Galerkin method is used to solve (IV-l). * is
approximated globally and locally by

G E 6 E (IV-2)

k 1 k=l

in which G is the total number of nodal points, E denotes the Eth element,

Mk are the quadratic global interpolation functions generated from the local

Eelement shape functions N . Six-node triangular elements are used here.

The local element shape functions are all quadratic in this case. The

element algebraic equations are

6/ 6 GE ES+ i Z Pk + i QJk k (IV-3)

kl jk k k-l k kil
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in which

KE 6r
SE (IV- )AK

PE 27TR (NNE Z AE (Ib

jk j3k i-b
AE

E~k -R ff ( &,n ) iaE ( &,n ) dedn( V- c
3jk 3-c

area

E = -2irR f(IV- 14d)

AE

The weighting function wE is given by

NE(x,yr)

2 2+ 37 (IV-5)[(x -) + (y _ 2+l32dd

A

Because of the numerical difficulty associated with the sharp variation

of the Kernal function in (IV-5), the weighting function is calculated

analytically within the element and numerically outside the element.

Eq. (IV-4c) is then integrated entirely by numerical quadrature.

Since N is quadratic, six basic integrations with numerators

l,x,yx 2,xy, and y2 in (IV-5) need to be performed. To simplify the

integration, each element is first mapped onto a standard triangle, which

is independent of the coordinates of the nodes of the element. The inte-

grations are then performed. The expressions obtained are then used for

the calculations of (IV-5) for all the elements.

The resulting global matrix is again complex, nonsymmetric, and fully

populated. Local, nonlocal, and image solutions can be calculated Just as

in the one-dimensional case. Eddy currents can be calculated through numerical

, . ... ,.. ' I ,'



differentiation, and magnetic pressure and temperature evaluated after

the stream function is solved.

Capabilities of the Program TWOD

A fortran program TWOD has been developed based on the formulation

of eqs. (IV-3) - (IV-5). It calculates the local and nonlocal solutions of

stream function, eddy current, temperature, and pressure. As of this writing,

the image solution and two-dimensional graphic output capabilities remain to

be implemented. Uniform magnetic field and fields due to any number of

magnetic dipoles can be handled. Magnetic fields generated from some types

of coils of interest will be added. Capability of analyzing for multiple

frequencies is also to be implemented.

Input

The geometry of the plate and the description of the external

magnetic field are the two basic forms of data needed by program TWOD.

The total numbers of nodal points, load cases, and elements need to be

specified. Coordinate and boundary condition must be given for each input

node. Intermediate nodes may be generated for any groups of nodal points

that are uniformly spaced. Element information may also be generated. Although

only six-node triangles are included in the present version of TWOD, the

program has been structured so that other types of elements may be added.

Element group information and the master card for each element group there-

fore need to be input too.

The program allows for different orders of numerical integrations.

Six- and seven-point formula are now provided. The order may be specified

on the master element group card.

Presently two types of magnetic fields may be analyzed: the uniform

field and the magnetic field due to any number of dipoles. For uniform



field no other information is needed. For dipole field the positions and

the relative strengths and senses of each magnetic dipole must be given

subsequently.

Output

Values of the stream function, eddy current, temperature induced in a

half cycle of the current, and time-averaged magnetic pressure are produced

as output. The stream function is calculated at the nodes of the finite element

mesh. Current, temperature, and pressure are evaluated at the centroid of each

element. The stream function and current are calculated in complex form. The

modulus and phase angle of the current are evaluated in the interest of spectral

analysis for the calculation of transient currents.

I
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V. NUMERICAL RESULTS AND EXPERIMENTAL VERIFICATION

The computer programs described in the preceding two chapters have

been applied to a number of problems to test and verify their validity and to

demonstrate their utility for problems of scientific and practical interest.

A portion of the verification process is the comparison of the computed

results with experimental measurements. This chapter consists of a summary

report of these numerical results.

One-Dimensional Analysis

The first test of the numerical techniques discussed in the previous

sections was the calculation of induced currents in a long rectangular plate

by a two-dimensional magnetic field (Figure V-l). Near the center of the

plate the currents are one dimensional or are parallel to the long edges of

the plate. The external magnetic field used in the test cases was that due

to parallel current filaments above the plate and a uniform time dependent

magnetic field. In addition to the induced current distribution across the

plate, the induced temperatures and magnetic pressure distributions were

calculated.

The following objectives were met with the one-dimensional program:

a) Comparison of low magnetic Reynolds number (R) results with

direct quadrature of local theory.

b) Comparison of high R results with the image method.

c) Demonstration of the importance of nonlocal theory for moderate

frequencies or R.

d) Comparison of finite element calculations with experimental

infrared measurements.

e) Combination of the finite element (FE) results for different

field frequencies with the fast Fourier transform (FFT) to

predict dynamic currents and pressures.
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Figure V-1. Induced Currents in a Long Rectanguliar Plate.
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f) Demonstration of the importance of the edge effect in

increasing the current density and magnetic pressure.

g) Calculation of the magnetic forces on a long plate due to

a tilted coil.

h) Examined the effect of a banded matrix as an approximation

to the full matrix or complete nonlocal solution.

Each of these will be described in the following subsections.

Comparison of FEM with Direct Quadrature for R<<l. When R<<1

one may drop the nonlocal terms in eq. (111-2) and obtain the local theory

for the stream function, i.e.

V2 iRB(x) (V-l)

The solution for the one-dimensional case can be found by direct integration

of a given B(x). Comparison of the low Reynolds number solution for the

finite element method (FEM) and direct quadrature is shown in Figure V-2 for

a pair of current filaments centered above a long conducting plate. The

results show excellent agreement.

Comparison with the Image Method. When the frequency is high, i.e.,

R<<l,the nonlocal effects act to prevent the magnetic field from penetrating

the plate. In this limit the solution can be approximated by considering an

image coil below the plate with serves to cancel out the normal component

of the total magnetic field (Figure V-3). The results of the one-dimensional

FEM with the image coil calculation are shown in Figure V-4 and again show

excellent agreement.

Nonlocal vs. Local Theory for Eddy Currents. A comparison of the

local and nonlocal theories for eddy current distribution is shown in

Figure V-5 for different R or frequencies. It is clear that even though
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Figure V-2. Comparison off FEM and Direct Quadrature Solutions for
Low R for a Pair off Current Filaments Centered Above
a Long Conducting Plate (R 0.01).
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the skin depth may be several times the thickness (R . 0.1, 6 - 4.5h), the

nonlocal distribution differs significantly from the local theory. The

importance of the nonlocal effects is not often recognized as evidenced

by the number of eddy current calculations which neglect the nonlocal

contribution [16] [20].

A more fundamental difference between the nonlocal and local effects

concern the magnetic pressure. When the nonlocal or self field of the

induced currents is neglected, the average force on the plate for a sinus-

oidal current is zero. The nonlocal or self-field effects are necessary to

obtain a time-averaged force on the plate between the sources of the external

field (such as coils or current filaments) and the currents in the plate.

Comparison of FE Calculations with Experimental Measurements. An

important feature of this research program has been the experimental veri-

fication of the numerical calculations. To check the calculations, measure-

ments of one of several physical quantities along the surface of the plate must be

made such as electric or magnetic fields, induced temperature, or magnetic

pressure. Measurement of electric or magnetic fields associated with the

induced currents in the plate involve taking data of a sufficient number of

points to map out the current distribution. However, in recent years an

infrared scanning technique has been developed which can sense the incremental

temperature distribution. This technique is based on the fact that for

small times after the induced currents are generated, the heat conduction

can be neglected and the induced temperature is proportional to the square

of the current density. The heat equation is given by

-2T + c T = (V-2)
-t a



in which K is the thermal conductivity, and c is the heat capacity of the

plate. Under appropriate conditions on the gradient of temperature

and time, one may neglect the first term and write

T -- -L j 2dt (V-3)

0

To simulate a one-dimensional problem, a rectangular multiturn

induction coil was placed parallel to a flat aluminum plate and induced

temperatures were measured across the plate under the middle of the coil

(Figure V-6). The two-dimensional infrared scanner used is described in

Appendix A. An infrared thermogram of the temperature or J2 pattern in the

plate due to a pulsed rectangular coil is shown in Figure V-7. The induction

coil has damped sinusoidal currents. Comparison of the qualitative behavior

of the measured temperature and the calculated temperature distribution

along the plate using an effective frequency is shown in Figures V-8 and

V-9 for both high and low frequencies. Both calculated and measured data

have been normalized. Excellent qualitative agreement can be seen for the

coil centered above the plate (Figure V-8) and for the coil near the edge

of the plate (Figure V-9).

Quantitative agreement is difficult because the calculations are for

a harmonic excitation field and the experiment used pulsed current in the

coil. This problem was solved by calculating the induced current density,

as a function of frequency, and using a fast Fourier transform (FFT) to

calculate the induced current as a function of time, as shown in Figure

V-10. This data was then integrated using equation (V-3) above to calculate

the temperature as a function of time at the point of maximum temperature in

the plate. Using the maximum temperature in time along with the calculated

distribution as in Figure V-10 a quantitative comparison of calculated and

: , ... <- , "j',. --
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Figure V-7. Photograph of an Infrared Thermogram for Currents in a
Plate as Induced by a Pulsed Rectangular Coil.
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measured temperatures were made as shown in Figure V-8 . As might be

expected the measured values are about 20% below the calculated values. This

may be accounted for by heat transfer effects, and the fact that the observed

temperature on the back side of the plate may be different than the mean

temperature across the plate.

It is believed that the difference can be accounted for by experimental

error; therefore, the results are encouraging. Further experimental work may

be done using a search coil technique to measure the induced current across

the plate.

FE and FFT Methods for Pulsed Magnetic Fields. As discussed in the

previous section, the distribution of current in the plate, as well as induced

pressure and temperatures are for harmonic excitation. For pulsed or transient

excitation fields BO(t), one may decompose the field into its spectral

components

Bof(W) = B(t) e~tdt (V-h)

If the induced current is calculated as a function of frequency J(W), for an

excitation Boe -  , the time variation of current can be found from the

integral
J(t) = J(W) f(W)e-wtdw (V-5)

The function J(W) was found by calculating the induced current for

various frequencies using the nonlocal theory as shown in Figure V-11.

A polynomial was then fitted to these points over the significant frequency

domain of f(w). The Fourier integral was then approximated by a finite

sum and the summation carried out using a fast Fourier transform algorithm.

The resulting time history of current in the plate is shown in Figure V-l0.
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From this history the magnetic force and induced temperature histories in

the plate can be calculated.

Effect of Edges on Induced Eddy Currents. One of the immediate

results of infrared scan experiments on induced eddy currents in plates was

the observation that high current densities will occur when the excitation

field is concentrated near the edges of the plates. This can be seen in

Figure V-12a &b where a coil is moved closer to the edge of a rectangular

plate. The results of the one-dimensional program also show a distinct edge

effect for both the paired current filament induction, Figure V-9, and the

uniform field induction, Figure V-13.

Pressure Distributions Due to Tilted Induction Coils. Both magnetic

forming devices and magnetic levitation devices use current carrying coils

near plate-like conductors. The effect of tilting the induction coil has

been calculated as shown in Figures V-14 and V-15. The increased magnetic

pressure under the filament close to the plate produces a moment on the plate

and a restoring moment on the coil. The effect of lateral movement of the

coil can also be seen in Figure V-15, and the effect of lateral movement on

the restoring moment can be calculated.

Effect of Reduced Matrix Band on Nonlocal Solutions. One manifestation

of the FE implementation of the nonlocal theory is that the algebraic FE

equations become full rather than banded. Nevertheless, the nonlocal effects

which cause this loss of banding are proportional to 1/r2 in which r is the

distance from a self-field source point on the sheet conductor to the field

point in question, eq. (111-2). One method of restricting the nonlocal

effect at any field point on the sheet would be to exclude source points

at distances from the field point greater than some cut-off value of r.

For a uniformly spaced finite element mesh, this would yield a banded matrix,
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Figure V-12. Photographs Showing Effects of Edges on Induced Eddy
Currents.
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but the size of the band would now be determined by the cut-off distance.

The choice of an appropriate cutoff distance will be dependent upon the

particular problem. The solution to the restricted nonlocal problem with

an appropriate cutoff distance would be negligibly different from the full

nonlocal solution, and considerable savings in computation would be achieved

due to a reduction in the nonlocal integrations required, eq. (111-2).

As a preliminary test of this strategy, the expedient of merely

reducing the bandwidth of the FE equations was utilized by neglecting all

terms outside of selected bandwidths. For the nonuniform mesh necessary for

the eddy currents induced by a pair of external current filaments, this pro-

cedure is not equivalent to the selection of a cutoff distance. (A finer

mesh is required under each filament). Nevertheless, as illustrated in

Figure V-16, the reduction in bandwidth provides a variation in the solution

that approaches the full nonlocal solution. These results provide evidence

that reduced nonlocal solutions will be efficient and useful in some situations.

Future research will follow up on this indication by developing criteria for

the selection of appropriate cutoff distances and by implementing this strategy

in computer programs.

Two-Dimensional Analysis

As described in Chapter IV, a two-dimensional finite element code has

been written to predict the induced eddy currents in flat plates where the

skin depth is equal to or greater than the plate thickness. This code has been

partially verified in some limiting cases such as the low magnetic Reynolds

number limit. In this limit the solution for the stream function reduces

to a Poisson equation. For the uniform normal external magnetic field, the

problem is analogous to the torsion of a shaft. In this limit, the FEM solution

for a square and rectangular plate has been checked with analytical solutions
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for torsion of rectangular shafts.

The stream function contours for a rectangular plate in a uniform

magnetic field with sinusoidal time variation is shown in Figure V-17.

The resulting comparison of induced currents across the middle of the plate

has checked the one-dimensional solution in the low R limit (Figure V-18).

Nondestructive Testing (NDT) Application. One of the immediate appli-

cations of the two-dimensional results is the possibility of using induced eddy

currents and infrared scanning to detect cracks and flaws in sheet-like con-

ductors such as plates and shells. When the current flow is interrupted by a

crack, the increased current concentration near the crack tips increases the

induced temperature there which can be detected by an infrared scanner. Such an

example is shown in Figure V-19 where the tip of the crack or slit shows up as

a bright "hot spot".

The flow of current around a crack or slit in a plate was calculated

using the two-dimensional code for in the large skin depth limit (R - 0) for

a few notch widths. The stream function contours for one case are shown in

Figure V-20. These contours show the flow of current around the crack tip.

Contours of constant temperature are also shown in Figure V-21. These results

are in qualitative agreement with the infrared measurements since they clearly

show the temperature or J hot spots near the edges of the crack or slit.

This program can thus be used to develop a catalog of thermograms

for various flaws, cracks, and cutouts in sheet-like conductors. Also the

code can be used to calibrate eddy current probe NDT devices by predicting

the change of impedance in the probe as the eddy current probe is brought

near a crack or flaw.
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VI. CONCLUSIONS

This technical report describes the accomplishments of the first year

of a research project directed toward developing numerical methods for the

coupled analysis of forces, currents, and stresses in thin elastic structures

exposed to time-dependent magnetic fields. A stream function for the induced

eddy currents is used to reduce the three-dimensional electromagnetic problem

to an integro-differential equation in the two-dimensional surface of the sheet

conductor. Although formulations are presented herein for both flat and

cylindrically curved conductor sheets, to date the research has focused on

the response of flat plates to steady state harmonic and pulsed magnetic fields.

Finite element codes for one- and two-dimensional flat plates have been

developed which can calculate the induced current and magnetic fields in the

plates, the magnetic pressure distribution on the plates, and the temperature

distributions in the plates due to Joule heating. The eddy current calculations

include the nonlocal or self-field effects. These programs have been verified

by comparison to experimental results and to known analytical solutions.

The programs have been applied to a number of configurations. The re-

sults of these analyses give rise to the following conclusions:

1. The numerical method based on the stream function method produces

results in agreement with experimental observations and analytical solutions.

The success of this method is encouraging because the reduced dimensionality

promises significantly greater efficiency than methods based on a full three-

dimensional approach. In this sense, the stream function method is analogous

to the boundary integral equation method (boundary element method). However,

when nonlocal effects are taken into account the algebraic finite element equa-

tions become full rather than banded, and this increases the computational cost.

This can be ameliorated and a degree of bandedness restored by a proper modi-
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fication of the nonlocal integrals to account for the rapid decrease of the self-

field effect with increasing distance between sources and field points.

2. For medium to high magnetic Reynolds numbers, the contributions of the

self-field effect yield significantly different eddy currents than those pre-

dicted by a purely local solution. Most previous work in eddy current prediction

and magnetomechanics has neglected this effect. Moreover, for a harmonic field,

the nonlocal or self-fields effects must be taken into account to obtain the

time-averaged forces on the conductor.

3. The techniques and programs that have been developed will have appli-

cations to a number of practical problems. One such application illustrated in

this report is the use of induced eddy currents for the nondestructive testing

(NDT) for cracks and flaws in sheet-like conductors such as plates and shells.

he programs can be used to design and calibrate eddy current probe NDT devices

and to develop a catalog of thermograms for various flaws. Another possible

application is to geomagnetic prospecting, in which very large induction coils

on the surface of the earth might be used to detect the presence, location,

and orientation of seams of conducting ores. The programs could be used to

simulate this process and thereby play a role in the interpretation of prospecting

data.

The present computer programs can be used to predict the dynamic forces

on flat plates when the motion of the plate is small. The immediate task of

future research is to extend this to large deformations of the conductors where

true coupling of the magnetic and mechanical behavior occurs. In addition, it

is planned to extend this work to curved conducting surfaces such as cylindrical,

toroidal, and other shell configurations. Finally, applications to nondestructive

testing are being explored further.
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APPENDIX A

Description of Experimental Apparatus

Description of UTI Infrared Scanner

Commercially available infrared detectors include point sensing, line,

and two-dimensional or plane scanners. Two different commercial plane scanners

have been used over the history of this research program, though for the

reported phase of the study only the UTI Scanner was used.

The scanner consists of three main subsystems: (1) the detector,

(2) the continuous grey coding of temperatures on a black and white monitor,

and (3) a color coding and color display monitor. The scanner used was manu-

factured by UTI Corp. of Sunnydale, California based on an earlier design

called Spectrotherm 2000, by another company. The detector is a mercury

cadmium telluride (HgCdTe) crystal maintained at 780 K by liquid nitrogen.

HgCdTe is a photoconductive element sensitive to infrared radiation in the

2-12 um wavelength range. Radiation from different points in the field are

focused on the crystal by two rotating mirrors for both horizontal and vertical

scans.

The sensitivity of this unit is as low as 0.20 C. The output from the

crystal detector is used to produce a variable grey spot on a cathode ray

display tube. White to black grey tones can be used for hot to cold or visa

versa. An isotherm option is available as well as a graphics temperature

display. One horizontal scan of temperatures is graphed below the two-dimensional

grey image of the temperature field.

The two-dimensional grey infrared picture has 525 raster lines and 600

elements per line on a 7.6 cm x 7.6 cm screen. The field can be focused from

10 cm to 6 meters. The depth of field is 15 cm at a distance of 80 cm.
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The scan and graphic temperature display takes 2 seconds, though on a

newer model a one-second option is available.

The electronic data can be stored electronically indefinitely so that

pictures can be taken of the display tube. Also a zoom capability can be

used to magnify and examine only part of the scanned field.

Finally the data can be color quantized in a separate unit. The UTI

uses a Sony Trinitron (trade name) 12.7 x 19.7 cm display screen and ten colors.

Each color represents a temperature interval. The resulting display is a

beautiful color set of isotherms.

The AGA Corp. also manufactures a two-dimensional field scanner

system. The scan time is shorter (16 per second) but the image is coarser

(210 horizontal lines, 140 elements per line) and no storage of data was possible.

This unit was used in earlier research, however, with some success.

Specimen Preparation

The amount of radiation transmitted to the detector depends not only

on the temperature of the transmitting object but on its emissivity. To avoid

spurious data due to differences in emissivity the conductors were sprayed with

a high emissivity, black coating. Two brands used were NEXTEL brand Ouede

coating (3101 series) and 3M Velvet Coating-Optical Black. These coatings

also decreased spurious infrared reflections from other objects.

Search Coil Apparatus

The infrared data was compared with experimentally measured eddy currents

by using a differential search coil. It is known from electromagnetics that

the Jump in tangential magnetic field ocross a thin conductor is directly pro-

portional to the current in the conductor. To measure the tangential magnetic

field at the surface of the plate, two small multi-turn coils were wound and

aligned with their axes parallel with the plate. The induced currents then



generate time-dependent magnetic fields which can be detected by these coils.

Since the output voltage is proportional to the change in magnetic field, a

passive R-C integrating circuit was used in series with the coils.

The coils were connected to cancel voltages. Thus the primary field

of the induction coil would produce almost zero voltage in the differential

coils. (Small errors due to the finite separation of the coils and the inhomo-

geneity of the induction coil field can occur). The resulting voltage is

almost entirely due to the field of the eddy currents.

* I
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APPNDIX B

Personnel Engaged in the Research

The following Cornell University personnel have been engaged in the
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Frances C. Moon, Associate Professor of Theoretical and Applied Mechanics,
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Kuan-Ya Yuan, Graduate Student in the Department of Structural Engineering,
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Kosei Hara, Graduate Student in the Department of Theoretical and Applied
Mechanics, Graduate Research Assistant

Timothy Bond, Electrical Engineer on the Technical Staff of the Department
of Theoretical and Applied Mechanics, Laboratory Assistant
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APPENDIX C

Communication of Technical Results

The following technical papers and oral presentations at scientific

and engineering meetings have emerged from this research to date:

Technical Paper

K.Y. Yuan, F.C. Moon, and J.F. Abel, "Magnetic Forces in Plates Using Finite
Elements", Proceedings, Third Engineering Mechanics Division Specialty
Conference, ASCE, New York, 1979, pp. 730-733.

Oral Presentations

F.C. Moon, "Infrared Measurements of Induced Eddy Currents in Sheet Conductors",
Joint INTERMAG MM Conference, New York, July 18, 1979.

K.Y. Yuan, "Magnetic Forces in Plates Using Finite Elements", Third ASCE/EMD
Specialty Conference, University of Texas at Austin, September 19, 1979.
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